US009299132B2

a2z United States Patent (10) Patent No.: US 9,299,132 B2
Cho et al. (45) Date of Patent: Mar. 29, 2016
(54) AUTOMATICALLY DETERMINING THE 8,594,447 B2* 112013 Smith ... GO6T 5/003
SIZE OF A BLUR KERNEL 382/199
8,861,884 B1* 10/2014 Fangcccooeevnnee. GO6T 5/003
. 382/255
(71) Applicant: Adobe Systems Incorporated, San Jose, 9,077,980 B2* 7/2015 Takagi HO4N 5/23258
CA (US) 2010/0272356 Al* 10/2010 GO6T 7/0002
382/170
(72) Inventors: Sunghyun Cho, Seattle, WA (US); Jue 2013/0057714 A1* 3/2013 Ishii .o HO4N 5/23248
Wang, Kenmore, WA (US); Jen-Chan N 348/208.4
Chien, Saratoga, CA (US); Dong Fen 2013/0243319 Al 9/2013 Cho oo GO6T 5/003
en, £d: - oong teng, 382/168
Beijing (CN) 2013/0308007 A1* 11/2013 Tanaka HO4N 5/225
348/222.1
(73) Assignee: Adobe Systems Incorporated, San Jose, 2014/0104458 Al1* 4/2014 Tanaka GO6T 5/20
CA (US) 348/239
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
%atserét lls SZ)((IZE):ILdeg 501r dadJuSted under 35 Cho, Sunghyun, et al., “Fast Motion Deblurring”, ACM Transactions
= Y ays. on Graphics (Proceedings of SIGGRAPH ASIA 28, 5, (2009), 8 pgs.
. Fergus, Rob, et al., “Removing Camera Shake from a Single Photo-
(21) Appl. No.: 14/061,098 graph”, SIGGRAPH ACM, [Online]. Retrieved from the Internet:
(22) Filed: Oct. 23,2013 ?;éf){é) 787_7ghfp://cs.nyu.edu/~fergus/papers/deblurffergus.pdf>,
(65) Prior Publication Data (Continued)
US 2015/0110403 A1 Apr. 23,2015
Primary Examiner — Gregory M Desire
(51) Int.CL (74) Attorney, Agent, or Firm — Shook, Hardy & Bacon
GO6K 9/46 (2006.01) LLP
GO6K 9/66 (2006.01)
GO6T 5/00 (2006.01)
(52) US.CL (57) ABSTRACT
CPC ... GO6T 5/003 (2013.01); GO6T 2207/20192 A computer-implemented method and apparatus are
. . . (2013.01) described for deblurring an image. The method may include
(58) Field of Classification Search accessing the image that has at least one blurred region and,
CPC s GO6T 5/003; GO6T 2207/ 20192 automatically, without user input, determining a first value for
See application file for complete search history. a first size for a blur kernel for the at least one blurred region.
. Thereafter, automatically, without user input, a second value
(56) References Cited for a second size for the blur kernel is determined for the at

U.S. PATENT DOCUMENTS

8,090,212 B1* 1/2012 Baxansky HO3F 3/217
382/260
8,396,316 B2* 3/2013 Kwon GO6K 9/036
382/199

least one blurred region. A suggested size for the blur kernel
is then determined based on the first value and the second
value.

18 Claims, 27 Drawing Sheets

ACCESS AN IMAGE HAVING A BLURRED
REGIGN

$

20

AUTOMATICALLY DETERMINE A FIRST
VALUE FOR A FIRST SIZE OF THE
BLUR KERNEL

;

AUTCMATICALLY DETERMINE A SECOND
VALUE FCR A SECOND SiZE OF
THE BLUR KERNEL

;

DETERMINE A SUGGESTED SIZE FOR THE
BLUR KERNEL BASED ON THE FIRST AND
THE SECOND VALUE

US 9,299,132 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Hirsch, Michael, et al., “Fast Removal of Non-uniform Camera
Shake”, Proc. IEEE International Conference on Computer Vision,
[Online}. Retrieved from the Internet: ,URL: http://webdav.is.mpg.
de/pixel/fast _removal of camera_shake, (2011), 8 pgs.

Osher, Stanley, et al., “Feature-Oriented Image Enhancement Using
Shock Filters”, SIAM Journal on Numerical Analysis, vol. 27, No. 4,

[Online]. Retrieved from the Internet: ,URL: http://www.jstor.org/
stable/2157689. Accessed: Sep. 30, 2013, (1990), 919-940.

Shan, Qi, et al., “High-quality Motion Deblurring from a Single
Image”, ACM Transactions on Graphics (TOG)—Proceedings of
ACM SIGGRAPH, vol. 27 Issue 3, Article No. 73, (2008), 1-10.
Whyte, Oliver, et al., “Non-uniform Deblurring for Shaken Images”,
Proceedings ofthe IEEE Conference on Computer Vision and Pattern
Recognition, (2010), 8 pgs.

Xu, Li, et al., “Two-Phase Kernel Estimation for Robust Motion
Deblurring”, ECCV, Part 1, LNCS 6311, (2010), 157-170.

* cited by examiner

US 9,299,132 B2

Sheet 1 of 27

Mar. 29, 2016

U.S. Patent

/9y

3

—t
o

Ex

HIAHIS SYVS
NOILYD TeddY ONILIGE IOV
ANIONT
ANIONT ONIZIS 4 05 —
o —
NOULSIOONS RETNENRVI ST SN in
NOIDTY
0O~ s m.iv
¥ ¥ A A IADIAIA
el 3N
A -l INIDNT ONMYENTEIA IOV QJ:
vy
]
p |
il \ N
A Yol
AN
-

U.S. Patent Mar. 29, 2016 Sheet 2 of 27

W,

US 9,299,132 B2

IMAGE DEBLURRING ENGINE

§

\
3

W REGION
BLUR KERNEL
SIZING ENGINE ™= SUGGESTION

ENGINE

IMAGE EDITING APPLICATION

USER DEVICE

140

Rt

V4

U.S. Patent Mar. 29, 2016 Sheet 3 of 27 US 9,299,132 B2

0
N

2.
;

IMAGE MODULE

BLUR KERNEL SIZING MODULE T 220
-0
AUTOCORRELATION- BASED SIZE '
ESTIMATOR

LATENT IMAGE- BASED SIZE
ESTIMATOR

BLUR KERNEL SIZING ENGINE

/i

U.S. Patent Mar. 29, 2016 Sheet 4 of 27 US 9,299,132 B2

30

ACCESS AN IMAGE HAVING A BLURRED
REGION

1 0

AUTOMATICALLY DETERMINE A FIRST
VALUE FOR A FIRST SIZE OF THE
BLUR KERNEL

¥ A3

a2

AUTOMATICALLY DETERMINE A SECOND
VALUE FOR A SECOND SIZE OF
THE BLUR KERNEL

] AR

DETERMINE A SUGGESTED SIZE FOR THE
BLUR KERNEL BASED ON THE FIRST AND
THE SECOND VALUE

/i

U.S. Patent Mar. 29, 2016 Sheet 5 of 27 US 9,299,132 B2

.
~

A0

CALCULATE A DERIVATIVE OF A BLURRED
IMAGE

y AR

DETERMINE AN AUTOCORRELATION MAP
FOR THE DERIVATIVE

e
<2

] o

APPLY A THRESHOLD FILTER TO THE
AUTOCORRELATION

; A4

MEASURE CONNECTED COMPONENT
DISPLAYED IN AUTOCORRELATION MAP

Vo

US 9,299,132 B2

Sheet 6 of 27

Mar. 29, 2016

U.S. Patent

hN

O

i

U.S. Patent Mar. 29, 2016 Sheet 7 of 27 US 9,299,132 B2

(gl
=2
fston)
\
3\
\\
X
~ ~.
i
3
o
7

B s

U.S. Patent

Mar. 29, 2016 Sheet 8 of 27

US 9,299,132 B2

737 68

B0 g

U.S. Patent Mar. 29, 2016 Sheet 9 of 27 US 9,299,132 B2

T
™\

it

DETERMINE LATENT IMAGE
: e

ESTIMATE BLUR KERNEL FROM LATENT
IMAGE
: T
MEASURE NONZERO ELEMENTS IN
ESTIMATED BLUR KERNEL

V%

U.S. Patent Mar. 29, 2016 Sheet 10 of 27 US 9,299,132 B2

NS

U.S. Patent Mar. 29, 2016 Sheet 11 of 27 US 9,299,132 B2

820
!

8
§

Findf

U.S. Patent Mar. 29, 2016 Sheet 12 of 27 US 9,299,132 B2

160 =
e BLU ner [T
IMAGE RSEEER EL
MODULE MOBULE
T b eemien T 940
METRICS REGION
MODULE SELECTION
MODULE
REGION SUGGESTION ENGINE

Find

U.S. Patent Mar. 29, 2016 Sheet 13 of 27 US 9,299,132 B2

70

/)

AUVA RN

2

U.S. Patent Mar. 29, 2016 Sheet 14 of 27 US 9,299,132 B2

l\lQQ “\{\\

A

ACCESS A BLURRED IMAGE

; B

DEFINE A SIZE FOR EACH OF A PLURITIY
OF REGIONS

; RN

DETERMINE METRICS FOR AT LEAST TWO
OF THE REGIONS BASED ON A NUMBER OF
EDGE ORIENTATIONS WITHIN EACH REGION

: 1140

SELECT A REGION BASED ON THE METRICS

: 15

BASED ON THE SELECTED REGION,
ESTIMATE A BLUR KERNEL FOR
DEBLURRING THE BLURRED IMAGE

! R

DEBLUR THE BLURRED IMAGE USING
THE BLUR KERNEL

I 17

U.S. Patent Mar. 29, 2016 Sheet 15 of 27 US 9,299,132 B2

1220 ™

Iy

J

vitd
7

/

N

P00y

U.S. Patent

Mar. 29, 2016

Sheet 16 of 27

IMAGE BLUR KERNEL
MODULE MODULE
KERNEL DEBLUR

POSITIONING
MODULE MODULE

IMAGE DEBLURRING ENGINE

US 9,299,132 B2
B)
A

S 75

U.S. Patent Mar. 29, 2016 Sheet 17 of 27 US 9,299,132 B2

UL

ACCESS AN IMAGE HAVING A FIRST AND SECOND
BLURRED REGION

¥
GENERATE A FIRST AND SECOND BLUR KERNEL FOR
THE BLURRED REGIONS
¥ AR
POSITION THE FIRST BLUR KERNEL WITH RESPECT TO
THE FIRST BLURRED REGION

¥ LU

POSITION THE SECOND BLUR KERNEL WITH RESPECT
TO THE SECOND BLURRED REGION AND BASED ON THE
FIRST BLUR KERNEL

¥ 1450

PERFORM A DECONVOLUTION USING THE BLUR
KERNELS

‘g

U.S. Patent Mar. 29, 2016 Sheet 18 of 27 US 9,299,132 B2

o=
o2
2L
2
L, o
RN
Q i
&
Ve
—
ol :
7 22
{ e
ooy -

U.S. Patent Mar. 29, 2016 Sheet 19 of 27 US 9,299,132 B2

i -

p—
<R

™~

Blending region

‘% —~—tlh
o TrRTTHEE

180

T X me, e Tl)}é&{"”}h"’_g‘

Jig 164

10

LI g\’@: i T I g Tt 1 Tl fd-\:g:iu:%" 'k:{t;vzt SHIEL

Ty 768

US 9,299,132 B2

Sheet 20 of 27

Mar. 29, 2016

U.S. Patent

AR

S

NOE

Ty
5!

34

B

66 4

1

§ HOHS I

! .;Qi

U.S. Patent Mar. 29, 2016 Sheet 21 of 27 US 9,299,132 B2

[T
l\%\)\) gy

T 1
Y ACCESS DISPLAY)

MODULE MODULE

DISPLAY INTERFACE

ry g

U.S. Patent Mar. 29, 2016 Sheet 22 of 27 US 9,299,132 B2

190
CAUSE DISPLAY OF A GRAPHICAL USER INTERFACE
CONFIGURED TO BE USED TO DEBLUR AN IMAGE
; 1920
DISPLAY A USER SELECTED IMAGE INTHE
DISPLAY ZONE
{ S

DISPLAY A SUGGESTED BLUR KERNEL IN THE ZONE,
THE BLUR KERNEL BEING ASSOCIATED WITH A
REGION IN THE SELECTED IMAGE
‘; 11%3?;
DISPLAY THE SUGGESTED KERNEL PROXIMATE THE
ASSOCIATED REGION IN THE DISPLAY ZONE

S 79

US 9,299,132 B2

W oy

P&
/

Sheet 23 of 27

LA —

Mar. 29, 2016

/
d/
A

OINVE MIOYHINATHI T IV MDY - V)
J38 NOLJALA0 d0E MOHS AN et

/ M u\\//w
A
YA

U.S. Patent

US 9,299,132 B2

Sheet 24 of 27

Mar. 29, 2016

U.S. Patent

a0y

A R

y

%

W

STORE
; 2R IR

- QELY

- Qv

U.S. Patent Mar. 29, 2016 Sheet 25 of 27 US 9,299,132 B2

VR~

—ADVANCED

w0 T { SHowW BLUR) DETECTION REGIONS
7

STARE ESTIVATION
SCROLL TOESTMATION REGION 3
SHOW BLUR TRACE [

1 SHIL BLUR TRACE .
DELETE BLUR TRACE —

VI T

L0

US 9,299,132 B2

Sheet 26 of 27

Mar. 29, 2016

U.S. Patent

Bk

~—

SRt
LN -

W -

SHUNECIINEIE (- i

Wor

~

RRREAERS

RN

U.S. Patent

Mar. 29, 2016

BROTERRNE
PROCESSOR

Sheet 27 of 27

US 9,299,132 B2

QAR INSTRUCTIONS

2204

MAN MEMORY

GRAPHICS DISPLAY

b~

AU AINSTRUCTIONS

220

. FV‘;C"\:\
; i": \(J \’ \Jb{,

CURSOR CONTROL
"\T‘\/(‘E

HEVIL

STORAGE UNIT

NETWORK

WMACHINE-READABLE
MED%UM

xy) ;"

SIRUCHONS
A

7

L1957

0o o L
o0 — Boo
oo
Soon o o
R0 R B0
L s o
D50
e
2208
LS~
ot o

SIGNAL GENERATION
ORVCE

20

22

FOALY

(313
A

g :“:\L%

US 9,299,132 B2

1
AUTOMATICALLY DETERMINING THE
SIZE OF A BLUR KERNEL

TECHNICAL FIELD

The subject matter disclosed herein generally relates to
image processing and editing and, more specifically, to auto-
matically determining a size of a blur kernel for removing
blur from images.

BACKGROUND

Taking handheld photos in low-light conditions is chal-
lenging. Since less light is available, longer exposure times
are needed to obtain an adequately exposed image. A conse-
quence of longer exposure times is that the quality of the
photo is more susceptible to camera movement which, in turn,
results in a blurred image. In order to avoid camera move-
ment, photographers frequently use a tripod to support a
camera. However, use of a tripod to remove movement is not
always practical. This is particularly relevant with the prolif-
eration of mobile phones with built-in cameras. Conse-
quently, in many, if not almost all circumstances, camera
shake is likely to be an issue resulting in blurry pictures.

Blur may be removed, with varying degrees of success,
from a blurred image in an attempt to recover a latent sharp
image. Known techniques utilize a user defined blur kernel to
deblur an entire image using deconvolution. One of the most
critical parameters in the deblurring process is the size of the
blur kernel. Most existing methods require blur kernel size as
an input parameter, and deblurring performance is often sen-
sitive to the kernel size. Blur kernel size set too small or too
large relative to the blurred region would result in an incor-
rectly estimated kernel size, and would not adequately restore
a sharp image from a blurred image. Further, the dimension-
ality of the solution space increases and deblurring is more
computationally intensive.

It will thus be appreciated that it is extremely challenging
for casual users without trained eyes to specify the kernel size
correctly. Thus, deblurring can become a frustrating process
for users trying several different values to figure out the right
blurkernel size. Accordingly, providing assistanceto a userin
selecting the size of a blur kernel to deblur an image would be
very beneficial.

BRIEF DESCRIPTION OF THE DRAWINGS

The present technology is illustrated by way of example,
and not by way of limitation, in the figures of the accompa-
nying drawings.

FIG. 1A is a diagram of a network environment, in accor-
dance with an example embodiment, in which applications
for editing images may be deployed.

FIG. 1B is a block diagram of a user device, in accordance
with an example embodiment, configured to edit images.

FIG. 2 is a block diagram of example components of a blur
kernel sizing engine, in accordance with an example embodi-
ment.

FIG. 3 is a flow diagram of a method, in accordance with an
example embodiment, for determining a suggested size of a
blur kernel for a blurred region in an image.

FIG. 41is a flow diagram of a method, in accordance with an
example embodiment, for estimating a size of a blur kernel for
a blurred region in an image using an autocorrelation map.

FIG. 5A shows an example blurred image.

FIG. 5B shows an example latent sharp image for the
blurred image of FIG. 5A.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5C shows an example blur kernel for the blurred
image of FIG. 5A.

FIG. 6A shows a screen shot illustrating an autocorrelation
map, in accordance with an example embodiment.

FIG. 6B shows a screen shot illustrating selected connected
components within the example autocorrelation map of FIG.
6A.

FIG. 7 is a flow diagram of a method, in accordance with an
example embodiment, for estimating a size of a blur kernel for
a blurred image using a latent image process.

FIG. 8A depicts an example image of blur kernel estima-
tion from a latent image.

FIG. 8B depicts the measurement of connected compo-
nents within the blur kernel estimation of FIG. 8A.

FIG. 9 is ablock diagram illustrating example components
of'aregion suggestion engine, in accordance with an example
embodiment.

FIG. 10 shows a screen shot of suggested regions, in accor-
dance with an example embodiment, for automatically esti-
mating a blur kernel.

FIG. 11 is a flow diagram of a method, in accordance with
an example embodiment, for automatically selecting a region
in an image for estimating a blur kernel.

FIG. 12 is an example blurred image showing positioning
of a blur kernel at a selected region of the blurred image.

FIG. 13 is a block diagram of example components of an
image deblurring engine, in accordance with an example
embodiment, to reduce spatially varying blur using multiple
blur kernels.

FIG. 14 is a flow diagram of a method, in accordance with
an example embodiment, for deblurring a blurred image.

FIG. 15 is an example blurred image showing positioning
of multiple blur kernels, in accordance with an example
embodiment, at multiple blurred regions of the image.

FIG. 16A shows a blending region, in accordance with an
example embodiment, between a first region, occupied by a
first blur kernel, and a second region occupied by a second
blur kernel, wherein the first and second regions overlap.

FIG. 16B is a schematic diagram illustrating a tile-based
blending arrangement, in accordance with an example
embodiment.

FIG. 17 shows a graphical user interface (GUI), in accor-
dance with an example embodiment, for editing images.

FIG. 18 is a block diagram of example components of a
display interface, in accordance with an example embodi-
ment.

FIG. 19 is a flow diagram of a method, in accordance with
an example embodiment, for presenting user editing controls
for deblurring an image.

FIGS. 20A-20C are exploded views of a blur kernel zone of
the GUI of FIG. 17.

FIG. 21 is a GUI, in accordance with an example embodi-
ment, illustrating an overlay of a blur kernel on an associated
image.

FIG. 22 is a block diagram illustrating components of a
machine, according to some example embodiments, config-
ured to read instructions from a machine-readable medium
and perform any one or more of the methodologies described
herein.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
numerous specific details are set forth to provide a thorough
understanding of example embodiments. It will be evident to
one skilled in the art, however, that the present subject matter
may be practiced without these specific details.

US 9,299,132 B2

3

Overview

Example methods and systems to automatically determine
a size of a blur kernel to deblur an image are described. In an
example embodiment, a size of one or more blur kernels is
estimated automatically, without user input. For example, a
photo editing application (e.g., Adobe® Photoshop®, Light-
Room® or the like) may access an image having at least one
blurred region and automatically, without user input, deter-
mining a first value for a first size for a blur kernel for the at
least one blurred region. Thereafter, automatically, without
user input, a second value for a second size is determined for
the blur kernel for the at least one blurred region. A suggested
size for the blur kernel is then selected based on the first value
and the second value. The accessed image is then deblurred
by deconvolving the at least one blurred region with a blur
kernel of the suggested size. Thus, multiple sizes for a blur
kernel may be automatically determined for the same blurred
region, and a blurkernel is suggested (e.g., to a user) based on
these multiple sizes. Further, different suggested blur kernels
may be determined for different regions in the image.

Different mathematical algorithms may be used to deter-
mine the first and second values for the blur kernel. For
example, the first value for the first size of the blur kernel may
be determined by an autocorrelation-based size estimator,
and the second value for the second size of the blur kernel may
be determined by a latent image-based size estimator. How-
ever, it will be appreciated that other blur kernel estimation
techniques may be used in other embodiments.

In an example embodiment using an autocorrelation-based
size estimator, a derivative image is generated from the
accessed image, and the derivative image and the accessed
image are autocorrelated to obtain an autocorrelation result.
The first size for the blur kernel is then determined from the
autocorrelation result. The first size may be derived from
nonzero elements of the autocorrelation result and, option-
ally, the autocorrelation result is filtered to remove nonzero
elements less than a threshold value. In an example embodi-
ment using a latent image-based size estimator, a latent image
may be determined for the accessed image and, thereafter, a
blur kernel size is determined from the latent image.

The suggested size for the blur kernel based on the first
value and the second value may be determined using various
different mathematical techniques. For example, the sug-
gested size may be an average of the first and second values.
When user input is optionally taken into account, the sug-
gested size may be based on the average of the first value, the
second value, and a user defined size.

Example Computing Environment

As described herein, in some example embodiments, sys-
tems and methods are described that are configured to deblur
images via an image or photo editing application, such as the
Adobe® Photoshop® family of applications. The technology
may be implemented by one or more applications resident on
acomputing device (e.g., mobile computing device) and/or in
a networked environment (e.g., a cloud-based network envi-
ronment) where processing may, or may not, be distributed.

FIG. 1A is a diagram of a network environment 100, in
accordance with an example embodiment, for editing images
or otherwise processing images (e.g., digital photographs).
The network environment 100 is shown to include a user
device 110 that supports a user interface 115 configured to
receive input from an associated user, and configured to
present information to the user to allow deblurring of images.
The user device 110 may include a web browser application,
an application (e.g., “app”), or other programs configured to
display images and/or allow the user to input or identify
images for editing. For example, the user interface 115 may

10

20

25

30

35

40

45

55

60

65

4

facilitate the access of one or more photographic images
stored on the user device 110 (e.g., in a photo library), and
import images from remote devices and/or applications and
so on. The user interface 115 may form part of a photo editing
application (e.g., Adobe® Photoshop®, LightRoom® or the
like).

The user device 110 is shown to communicate over a net-
work 120 with a server 130 (e.g., a Software as a Service
(SAAS) server), which provides a cloud-based and/or net-
work-based image editing application 135. The image editing
application 135 may communicate with the user device 110
and its user interface 115 to facilitate the editing of images by
the user via the user device 110.

The network 120 may be any network that enables com-
munication among machines, databases, and devices (mobile
or otherwise). Accordingly, the network 120 may be a wired
network, a wireless network (e.g., a mobile or cellular net-
work), a storage area network (SAN), or any suitable combi-
nation thereof. In an example embodiment, the network 120
includes one or more portions of a private network, a public
network (e.g., the Internet), or combination thereof. The user
device 110 may be any suitable computing device, such as a
desktop computer, a laptop computer, a smart phone, a tablet,
a gaming device, or any other computing device configured to
facilitate interactions between a user and the image editing
application 135.

It should be noted that the image editing application 135
may include various components, modules, and/or engines
configured to facilitate the deblurring, sharpening, and/or
other modifications of images. For example, the images may
have a single blurred region, a plurality of blurred regions,
and/or other artifacts that degrade the quality of the images
and hence removal thereof is desired.

In an example embodiment, the deblurring of an image (or
portions of an image) includes techniques that attempt to
estimate a latent sharp image for a blurred image (image
including blurred regions) by convolving an estimated latent
sharp image with a blur kernel. The blur kernel may be rep-
resented by a convolution matrix. In an example embodiment,
deblurring may utilize the following equation:

b=1"k+n

where b is the blurred image, 1 is the latent sharp image, k is
ablur kernel, n is image noise, and * is a convolution operator
(as discussed in more detail below with reference to FIGS.
5A-C). Deconvolution of the blurred image b, which is a
reverse operation of the convolution operation, leads to the
latent sharp image 1. Deconvolution, therefore, is an operation
that may reverse, change and/or modity blur, distortions, or
other imperfections in an image. Thus, solving for 1 by decon-
volving the blurred image b with the blur kernel k may lead to
an enhanced or sharper image where blurring is at least
reduced in blurred regions of the image.

The image editing application 135, therefore, may com-
prise various components to deblur images including, but not
limited to, an image deblurring engine 140, a blur kernel
sizing engine 150, and a region suggestion engine 160. The
image deblurring engine 140 may be configured to deblur
images having multiple blurred regions (e.g., spatially vary-
ing blur), the blur kernel sizing engine 150 may be configured
to automatically (e.g., without human intervention) deter-
mine a size of one or more blur kernels utilized in deblurring
images, and the region suggestion engine 160 may be config-
ured to automatically identify and/or suggest regions within a
blurred image at which to apply and/or generate blur kernels.

Although the example image editing application 135 is
shown as being part of a network environment 100, it may be

US 9,299,132 B2

5

deployed wholly, or in part, on any of the machines, data-
bases, or devices shown in FIG. 1A. For example, FIG. 1B is
a block diagram of a user device 170, in accordance with an
example embodiment, configured to edit images. The user
device 170 may be the same or similar to the user device 110
and may be configured to support the image editing applica-
tion 135 (as a standalone or networked device). For example,
the user device 170 may store and execute software/instruc-
tions to facilitate interactions between a user and the image
editing application 135 via the user interface 115 of the user
device 110.

In some example embodiments, the image editing applica-
tion 135 may perform, or cause to be performed, various
image editing tasks at different networked locations. For
example, the image editing application 135 may remotely
estimate blur kernels at the server 130, while locally deblur-
ring images at the device 110, or vice versa. The use of
different resources may be user-selectable, such that a user
may configure the image editing application 135 to perform
certain tasks remotely, or in the cloud, and other tasks locally.
Examples of Automatically Determining the Size of a Blur
Kernel

As described herein, deblurring an image involves decon-
volving one or more blurred regions using at least one blur
kernel. At times, users attempting to deblur an image having
blurred regions may be unable (or of insufficient skill) to
define an appropriate size of the blur kernel used to deblur the
image. For example, when a selected size of the blur kernel is
too small, the selected blur kernel may be considered an
unsuitable kernel, which may not properly or sufficiently
deblur the image. Also, when a selected size of the blur kernel
is too large, the selected blur kernel may not properly or
sufficiently deblur the image. Therefore, automatically esti-
mating and/or determining the size of blur kernels may pro-
vide users with suitable blur kernels of appropriate size to
adequately deblur images (e.g., via existing deblurring algo-
rithms and/or the algorithms described herein). In an example
embodiment, the automated estimation of the size of the blur
kernel is calculated electronically without human input influ-
encing the size of the blur kernel. In another example embodi-
ment, the size of the blur kernel may at least partially be
determined based on algorithms that do not depend on user
input.

As described herein, example systems and methods are
described that may automatically estimate or otherwise deter-
mine the size of a blur kernel used to deblur at least one region
of a blurred image. FIG. 2 is a block diagram of example
components (or modules) of a blur kernel sizing engine 150,
in accordance with an example embodiment. The example
components may be hardware, software, or a combination of
hardware and software, and may be executed by one or more
processors. In the example embodiment, the blur kernel siz-
ing engine 150 is shown to include an image module 210 and
a blur kernel sizing module 220. The blur kernel sizing mod-
ule 220 may include an autocorrelation-based size estimator
222 to estimate a first size of the blur kernel, a latent image-
based size estimator 224 to estimate a second size of the blur
kernel, and process the results to suggest or recommend a size
of'the blur kernel to be used to deblur the image. It is however
to be noted that the autocorrelation-based size estimator 222
and the latent image-based size estimator 224 are merely
examples of estimators, and that other mathematical tech-
niques may be used in other embodiments.

The image module 210 may be configured (e.g., a pro-
grammed processor) to access an image (e.g., an image stored
in a photo library on a device) having at least one blurred
region. In an example embodiment, a user selects or identifies

10

15

20

25

30

35

40

45

50

55

60

6

an image including a region to be deblurred using a graphical
user interface, and the image module 210 then accesses the
image (e.g., accesses data defining the image) for processing.

In some example embodiments, the blur kernel sizing mod-
ule 220 is configured to estimate a size of a blur kernel for the
accessed image using two different sizing estimators. For
example, the blur kernel sizing module 220 may automati-
cally determine a first value for a first size of a blur kernel for
a blurred region using a first sizing estimator (e.g., the auto-
correlation-based size estimator 222), automatically deter-
mine a second value for a second size of the blur kernel using
a second, different, size estimator, and select a suggested size
for the blur kernel that is based on the first value and the
second value, as described in more detail with reference to
FIG. 3. It should be appreciated that the estimated values for
the sizes of the blur kernel may however be computed by the
same estimator or any one or more estimators.

FIG. 3 is a flow diagram of a method 300, in accordance
with an example embodiment, for determining a suggested
size of a blur kernel for deblurring a blurred region in an
image. The method 300 may be performed by the blur kernel
sizing engine 150 and, accordingly, is described herein
merely by way of example with reference thereto. It will be
appreciated that the method 300 may be performed on any
suitable hardware.

In the method 300, the blur kernel sizing engine 150 may
access data representing an image (herein also referred to as
accessing the image) having at least one blurred region (see
operation 310). For example, the image module 210 may
access a blurred image including one or more blurred regions.
In some example embodiments, the image module 210 may
downsample the accessed image in order to reduce noise
and/or reduce the size of the blurred regions that are used to
estimate the size of a blur kernel.

Thereafter, as shown in operations 320 and 330, the blur
kernel sizing engine 150 automatically, without user input,
determines a first value for a first size of a blur kernel, and
automatically, without user input, determines a second value
for the size of the blur kernel to be used in deblurring a region
of'the image. In an example embodiment, two different sizing
techniques may be used to determine the first and second
values. As mentioned above, the first size estimator may be an
autocorrelation-based size estimator (e.g., the autocorrela-
tion-based size estimator 222), which determines an esti-
mated size of the blur kernel based on autocorrelating the
accessed image with a derivative of the accessed image, as
discussed by way of example below with reference to FIG. 4.

As shown in operation 340, the method 300 may then
automatically determine a suggested size for the blur kernel
based on the first and second values.

FIG. 4 is a flow diagram of a method 400, in accordance
with an example embodiment, for estimating a size of a blur
kernel for a blurred region in an image using an autocorrela-
tion process. The method 400 may be performed by the auto-
correlation-based size estimator 222 and, accordingly, is
described herein merely by way of example with reference
thereto. It will be appreciated that the method 400 may be
performed on any suitable hardware.

A correlation operation fog between two images fand g
may be defined as:

Sog=r**g

where o is a correlation operator, and f* is a flipped version
of f, which may be flipped both horizontally and verti-
cally (e.g., f(x,y)=f(-x,~y) where x and y are pixel coor-
dinates). Autocorrelation occurs when f and g are iden-
tical. In some cases, derivatives of natural images are

US 9,299,132 B2

7

usually weakly correlated to one another, and autocor-
relation results of image derivatives may be approxi-
mated by a delta function, which has a single nonzero
peak, while other values are zero. However, when an
image is blurred and includes blurred regions, deriva-
tives of the image become more correlated to the image
and/or to one another, and the autocorrelation becomes
less similar to a delta function. Accordingly, in an
example embodiment, a corresponding blur kernel may
be based the deviation of the autocorrelation (e.g., delta
function).
Mathematically, the autocorrelation of a derivative of a
latent sharp image 1 should be close to a delta function, such
as:

(d Do (d*)=((d*1y**(d*]))=d

where d is a discrete differential operator, and J is a delta
function. However, the autocorrelation of a derivative of
a blurred image b is:

(d*B)o (@*D)=(d k)@ D=k 5y (T
(@ D)=(k**k)*d

The autocorrelation of (d*b) is related to the blur kernel k.
Therefore, the actual blur size may be related to the nonzero
elements in the autocorrelation result. For example, assuming
a blur kernel size is generalized as W, xH,, the size of k**k is
QW ~Dx(2H,-1).

Accordingly, in an example embodiment, in operation 410
the autocorrelation-based size estimator 222 calculates a
derivative for the blurred regions of the accessed image. The
autocorrelation-based size estimator 222 may apply a difter-
ential operator to data representing the accessed image, such
as a discrete differential operator d, defined as:

SN
1}
o o O
|
< = L
< —_

FIG. 5A shows an example of a blurred image 510, FIG. 5B
shows a latent sharp image 505 corresponding to the blurred
image 510, and a corresponding blur kernel 515 is shown in
FIG. 5C. The autocorrelation-based size estimator 222 may
calculate various derivatives of the blurred image 510, such as
first order derivative, a second order derivative, and so on. By
computing derivatives, in an example embodiment, pixels in
flat regions can be removed from being considered in the
autocorrelation map. Other derivative filters may provide
similar effects, and they may be used instead.

Referring back to FIG. 4, in operation 420, the autocorre-
lation-based size estimator 222 may determine an autocorre-
lation map for the derivative. The autocorrelation map may
reflect the autocorrelation between the blurred image 510 and
the derivative of the blurred image 510. In an example
embodiment, the autocorrelation-based size estimator 222
may compute the autocorrelation using a Fourier transform,
or other similar technique.

Thereafter the method 400, as shown in operation 430,
applies a threshold filter to the autocorrelation of the blurred
image and the derivative thereof. For example, in order to
determine the size of the blur kernel from the autocorrelation
mayp, the autocorrelation-based size estimator 222 may iden-
tify the extent of nonzero elements within the autocorrelation
map, and determine the size of the blur kernel based on the
nonzero elements (e.g., as described with reference to FIGS.
6A and B below). However, in some cases, noise and/or

15

20

25

35

40

45

50

55

8

repetitive patterns, such as textures in the latent image 1, may
introduce misleading nonzero values, which may cause the
autocorrelation result to differ from a delta function. The
autocorrelation-based size estimator 222 may, therefore,
apply a threshold filter to the autocorrelation result to remove
small non-zero components (e.g., less than a threshold value)
from the autocorrelation result, in order to correctly and/or
robustly estimate the extent of nonzero elements caused by
the blur kernel k, among other things.

In operation 440, a connected component in the autocor-
relation map may be identified (e.g., using the autocorrela-
tion-based size estimator 222). For example, the autocorrela-
tion-based size estimator 222 may measure a cluster of
nonzero elements within the autocorrelation map, which may
then define the connected components.

FIG. 6A shows a screen shot 600 illustrating an example
autocorrelation map 605 determined using the method 400.
As shown in FIG. 6A, the components are symmetrical. FIG.
6B shows a screen shot 610 illustrating selected connected
components 615 within the example autocorrelation map
605. For example, the autocorrelation-based size estimator
222 may identify the connected component 615 of nonzero
elements centered within an autocorrelation map 605, and
measure the dimensions (e.g., a maximum width and height)
of the connected component 615 in a connected component
zone, shown as box 620. The autocorrelation-based size esti-
mator 222 may then determine and/or estimate the size of the
blur kernel based on the measured width and height of the
connected component 615. For example, the autocorrelation-
based size estimator 222 may determine the box 620 is 21 by
21 pixels, and automatically estimate the size (e.g., determine
a lower and/or higher value) of the blur kernel to be 21 by 21
pixels, or within a range of sizes that includes the determined
size of the box 620. It should be noted that the area or zone of
connected components may, in other embodiments, be of
different shapes and that a box is merely an example of such
a shape.

In some example embodiments, the second size estimator
(e.g., the latent image-based size estimator 224) estimates a
size based on an estimated latent image. For example, the
latent image-based size estimator 224 may automatically
generate and/or determine a rough guess or estimate of a
latent image 1 for the blurred image, and use the estimated
latent image to automatically determine the size of the blur
kernel.

FIG. 7 is a flow diagram of a method 700, in accordance
with an example embodiment, for estimating a size of a blur
kernel for an image using a latent image process. The method
700 may be performed by the latent image-based size estima-
tor 224 and, accordingly, is described herein merely by way of
example with reference thereto. It will be appreciated that the
method 700 may be performed on any suitable hardware.

In operation 710, the latent image-based size estimator 224
determines an estimated latent image for the accessed image.
The latent image-based size estimator 224 may apply a shock
filter to a blurred image b to restore sharp edges within the
image. The latent image-based size estimator 224 may then
compute one or more gradient maps from the shock filtered
result. Optionally, gradient values of small magnitudes (e.g.,
below or equal to a gradient threshold) may be removed to
remove noise and determine a gradient map p, and p,,, which
represents the estimated latent image.

Thereafter, as shown in operation 720, a blur kernel may be
estimated from the latent image, for example, using the latent
image-based size estimator 224. Given p, and p,, are suitable
for an estimated latent image, the method 700 may estimate

US 9,299,132 B2

9

(e.g., using the latent image-based size estimator 224) a blur
kernel k by solving the following example optimization equa-
tion:

(lpe k= < Bl +llpy ek — dy b +

k = argmin
k alld, #klI* + alldy #kII* + BlkI)

where d, and d,, are the first order discrete differential
operators along the x and y axes, the first two terms are
data fidelity terms based on image gradients, the third
and fourth terms are regularization terms to cause a blur
kernel k to be smooth and continuous, the fifth term is a
Tikhonov regularization term to further stabilize the
optimization problem, and o and p are regularization
strength for each regularization term.
In an example embodiment, the latent image-based size
estimator 224 solves the above equation using Fourier trans-
forms, as follows:

Pilut, v)Dx(u, v)B(u, v) + Py, v)Dy(us, v)B(u, v)

K = e O + Py (.) + (1D (.)P + 1Dy,) +

where K, P, P, D,, D, and B are Fourier transforms of k,,
Px Py &y, d,, and b, respectively, and P,(u,v) is the complex
conjugate of P, (u,v). By applying an inverse Fourier trans-
form to K, an estimate of the blur kernel k may be generated
(e.g., by the latent image-based size estimator 224). FIG. 8A
depicts an example image 800 of a blur kernel 810 estimated
from the estimated latent image, including nonzero elements
815 (see operation 710 in FIG. 7.).

Returning to the method 700, in operation 730, nonzero
elements of the estimated blur kernel may be measured. For
example, the latent image-based size estimator 224 may mea-
sure the nonzero elements 815 depicted in the blur kernel 810
by using various techniques described herein, such as the
techniques described with respect to FIG. 4. As mentioned
above, the size of the blur kernel may be determined from the
nonzero elements 815.

For example, FIG. 8B depicts the measurement of con-
nected components 825 within an estimated blur kernel 820.
A measured zone (connected component region) illustrated
by a box 827 reflects measurement of the connected compo-
nents 825. For example, the box 827 may have a width of 35
pixels and a height of 31 pixels, and the latent image-based
size estimator 224 may automatically estimate the size (e.g.,
determine a lower and/or higher value) of the blur kernel to be
35 by 31 pixels, or within a range of sizes that includes the
determined size of the box 827.

In some example embodiments, the blur kernel sizing
engine 150 may receive input from a user which identifies an
additional estimated size for the blur kernel. Thus, in an
example embodiment, estimation of the size of a blur kernel
may be based on one or more automated estimations and a
user-defined estimation. These estimations may then, for
example, be weighted and used to determine the blur kernel
size that will be used to deblur the image selected by the user
for processing.

Accordingly, in some example embodiments, the blur ker-
nel sizing engine 150 may utilize the autocorrelation-based
size estimator 222 to estimate a lower or smaller value of the
size of the blur kernel (operation 320), and may utilize the
latent image-based size estimator 224 to estimate a higher or
upper value of the size of the blur kernel (operation 330). In

10

15

20

25

30

35

40

45

50

55

60

65

10

some alternate embodiments, the blur kernel sizing engine
150 may utilize the latent image-based size estimator 224 to
estimate the lower or smaller value of the size of the blur
kernel (operation 320), and may utilize the autocorrelation-
based size estimator 222 to estimate the higher or upper value
of' the size of the blur kernel (operation 330).

Returning to operation 340 in FIG. 3, the blur kernel sizing
engine 150 may determine the suggested size for the blur
kernel based on the first value and the second value. For
example, the blur kernel sizing engine 150 may perform a
variety of different determinations or follow various selection
criteria or rules when determining the suggested, or actual,
size for the blur kernel. Example selection criteria or rules
may include:

Select the first value as the suggested size for the blur
kernel when the value determined by the autocorrelation-
based size estimator 222 is lower than the value determined
by the latent image-based size estimator 224;

Select the first value as the suggested size for the blur
kernel when the value determined by the autocorrelation-
based size estimator 222 is higher than the value determined
by the latent image-based size estimator 224;

Select the second value as the suggested size for the blur
kernel when the value determined by the autocorrelation-
based size estimator 222 is lower than the value determined
by the latent image-based size estimator 224;

Calculate the average of the first value and the second value
as the suggested size for the blur kernel;

Calculate the average of the first value, the second value,
and a user defined size as the suggested size for the blur
kernel,

Calculate the median of the first value, the second value,
and a user defined size (and/or other estimated values) as the
suggested size for the blur kernel; or

Select the value estimated by the autocorrelation-based
size estimator 222 when the value is lower than the value
estimated by the latent image-based size estimator 224; and
SO on.

Thus, in some example embodiments, the blur kernel siz-
ing engine 150 and the methods 300 and 700 utilize one or
more size estimation techniques to automatically, with or
without user input, determine the size of a blur kernel for an
input blurred image.

Examples of Automatically Suggesting Regions for Blur Ker-
nel Estimation

As described herein, deblurring an image may involve
applying a blur kernel to a blurred region of an image. In some
example embodiments, the systems and methods described
herein may automatically select a certain region or part of the
image at which to estimate a blur kernel. Such as a region may
be selected because the characteristics it may have could
facilitate accurately and/or effectively deblurring the entire
image. The associated blur kernel may then be estimated for
the selected region.

The systems and methods, in accordance with example
embodiments, may access input or reference parameters,
such a blur kernel size (e.g., a size automatically determined
by the blur kernel sizing engine 150), and identify a best or
suitable region of the image at which to estimate and/or apply
the blur kernel. A selected or suitable region may be a region
that includes edges of objects in the image (e.g., an outline of
a person, a tree, etc.), over-exposed pixels within the image,
under-exposed pixels within the image, and/or any features
within the image that may break the linearity of motion caus-
ing blurring of the image (e.g., blurring due to camera move-
ment).

US 9,299,132 B2

11

An additional input parameter may be associated with a
user-identified region within the blurred image, and a best or
suitable region that is proximate to the user-defined region
may be identified. Accordingly, the user may provide an
initial reference region (or point in a region), and the user-
identified region may be refined or adjusted automatically to
enhance deblurring. In some example embodiments, such as
when a blurred image includes a spatially varying blur (e.g.,
two or more distinct blurred regions within the image), the
systems and methods may identify multiple suitable regions
(ideally best regions) in which to estimate and/or apply an
associated blur kernel.

FIG. 9 is a block diagram illustrating example components
of a region suggestion engine 160, in accordance with an
example embodiment. The region suggestion engine 160 is
shown to include a plurality of modules that may be imple-
mented in hardware, software, or a combination of hardware
and software, and may be executed by one or more proces-
sors. For example, the region suggestion engine 160 may
include an image module 910, a blur kernel size module 920,
ametrics module 930, and aregion selection module 940. The
region suggestion engine 160 may utilize representative 2D
discrete arrays for a selected blurred image in order to suggest
appropriate (ideally best) regions of the images at which to
estimate and/or apply blur kernels.

A 2D discrete array may often represent a digital image.
For example, given a grayscale image f of size WxH, a rep-
resentative 2D discrete array may be as follows: f(x,y)=f, ,
where xe[0,W-1] and ye[0,H-1] are integers for pixel coor-
dinates, and f_, is the intensity value at the pixel (x,y).

Further, an image gradient V1(x,y) that is the first-order
discrete derivative of f(x,y), may be defined as:

VAxD =))T

and a discrete partial derivative f (x,y) may be defined as:

S&wy) a1 y)-fxy)

using the discrete forward difference, and f(x,y) may be
defined in a similar way. Of course, other definitions for the
partial derivatives are also possible.

Additionally, as Vi(x,y) is a 2D vector, its magnitude may
be defined as:

IV e P e)

and its angle may be defined as:

fy(xa y)]

WO 3,3 = v 22

The above example 2D discrete array may be utilized to
represent a selected blurred image in order to suggest suitable
regions of the images at which to estimate and/or apply blur
kernels, as described in more detail below.

Returning to the region suggestion engine 160 shown in
FIG. 9, in some example embodiments, the image module
910 is configured to access a blurred image represented by a
2D discrete array. For example, the image module 910, which
may be similarto the image module 210, may access an image
selected by a user of the image editing application 135, via the
user interface 115 of the user device 110. It will be appreci-
ated that images may be stored in various different locations
(e.g., ina photo library stored on a device or in the cloud) and
such access may be directly or via a network (e.g., see FIG. 1).

The blur kernel size module 920 is configured to define a
size for a blur kernel associated with the blurred image. In an

10

15

20

25

30

35

40

45

50

55

60

65

12

example embodiment, the blur kernel size module 920
employs similar or the same methodology as described herein
with respect to the blur kernel sizing module 220. Accord-
ingly, the blur kernel size module 920 may include one or
more blur estimators, such as the autocorrelation-based size
estimator 222 and/or the latent image-based size estimator
224. For example, the blur kernel size module 920 (or, the blur
kernel sizing module 220), may automatically determine a
lower value for a size of a blur kernel for the blurred region
using a first size estimator, automatically determine an upper
value for the size of the blur kernel using a different second
size estimator, and determine a size for the blur kernel that is
based on the lower and upper value for the size of the blur
kernel.

In some example embodiments, the image module 910
may access a blurred image, such as a blurred image b, and
preprocess the blurred image by downsampling the image
with respect to the input blur kernel size, such as asize N, xN,.
The downsampling may reduce the image size (e.g., such that
computational time is reduced), may reduce the blur, may
reduce noise or artifacts, and so on. The downsampled image
b,,,, may have a size W, xH, ..

The metrics module 930 may be configured to determine
metrics for at least two of the plurality of regions based on a
number of edge orientations within a region. The metrics
module 930 may perform various algorithmic processes to
identify image characteristics and/or features associated with
favorable or suitable regions within the selected image. A
suitable region may be any region determined to be favorable
for deblurring but may not necessarily be the most suitable
region within the blurred image. Such a region deemed suit-
able may be based on analyzing the image to identify contrast
edges of many different directions, and/or few or no corrupted
pixels (e.g., saturated pixels) within the selected image. For
example, the metrics module 930 may identify regions that
include objects having edges of different orientations to
facilitate estimation by the metrics module 930 of a blur
kernel. In an example embodiment, a blur kernel may be
selected or defined in a direction orthogonal to an orientation
(e.g., edge direction) of a selected edge. For example, to
identify a blur kernel of size N, xN,, a region may include N,
different edge directions.

The metrics module 930 may define an image region R as
a set of pixels in the region, such that:

R={(5) R 10X <R i3t Rrop<V <R psiom |

where R, and R,,,, are the leftmost and rightmost x
coordinates, and R,,, and R, are the topmost and
bottommost y coordinates in the region R. The metrics
module 930 may then calculate a metric associated with
a usefulness U(r) of a candidate region r, as:

U(R)=(NumEdgeOrientations(R)+a- AvgGradMag(R))
-ClipWeight(R)

where NumEdgeDirections (R) is the number of available
edge orientations, AvgGradMag(R) is the average gradient
magnitude, and Clip Weight(R) is a weight for giving penalty
to over- or under-exposed pixels in the region R, and . is a
weight for controlling the amount of contribution of Avg-
GradMag(R).

In some example embodiments, the variable NumEdgeOri-
entations(R) is the number of available edge orientations in
the selected image. To count the number of orientations, the
metrics module 930 may detect edges in the region R, and
uniformly discretize angles into M sections with a step angle
0, such that M-6=r, where:

US 9,299,132 B2

13

= 51,4

Each section S, may be defined as S=[i0,(i+1)8), and the
metrics module 930 may count the number of sections that
have sufficient (e.g., a reference number) of suitable edge
pixels, represented as:

M1
NumEdgeOrientations(r) = Z HE ;| = toien]

i=

where H[n] is the Heaviside step function, defined as
H[n]=1 if n=0, and otherwise H[n]=0. E, , is the set of
edge pixels whose angles belong to S,, defined as
E, ~{pIpeR, ;. "0(p)eS;}. IE, | is the cardinality or the
number of elements of the setE, ,, t,,,,,, i a threshold
value for only counting sections having enough edge
pixels, R, is the set of edge pixels in R detected by
edge detection, and ¢(p) is the angle of the edge pixel p,
where edge pixels are detected using gradient magni-
tudes (e.g., when the gradient magnitude of a pixel is
larger than a certain value, the pixel belongs to an edge).

In some example embodiments, the variable AvgGradMag
(R) is the average gradient magnitude value of the pixels in
the region r. For example, when an image region r has more
edges of large contrast, then AvgGradMag(R) becomes large,
and vice versa. AvgGradMag(R) may be defined as:

1
AvgGradMag(R) = —

R 2 Vbt .

(xyeR

AvgGradmag(R) is usually a very small number compared to
NumEdgeOrientations(R), and may be balanced by a con-
stant o, such as a=10.

In some example embodiments, the variable ClipWeight
(R) is defined as:

ClipweightR)= " c(x, y)
(x.y)ER

where c(x,y) is a pixel-wise weight function defined as:

1 if Clow =< biow(X, ¥) < Cp

(biow(x, ¥) = el
exXpl————

=] I bow(x.) > Cup

clx, y) =

(e
exp| - ——————

=] IF Bl) < up

where c,, and c,,,, are thresholds for detecting over- and
under-exposed pixels, respectively, and o is a parameter
for controlling the shape of the function c(x,y). For
example,

10

15

20

25

30

35

40

45

50

55

65

14

220 10
Cup = E’ Clow = E’ and o, =

40
255°

In some example embodiments, when an image includes
spatially varying blur, blur kernels may be estimated from
regions within a center of the image (or, within a center
between the blurred regions). These center-estimated and/or
-applied blur kernels may effectively reduce (ideally remove)
the spatially varying blur of the entire image. Thus, in an
example embodiment, the metrics module 930 may apply
and/or add a location weight variable to the determined met-
rics for the regions of the image. For example, the metrics
module 930 may calculate and/or otherwise determine a use-
fulness U'(R), which is the usefulness of the metric described
above with an additional location weight variable, as follows:

U'(R)=(NumEdgeOrientations(R)+a-AvgGradMag
(R))-ClipWeight(R)- LocWeight(R)
where LocWeight(R) is a weighting function for consider-
ing an image region around an image center (or, another
location within the image), and may be defined as fol-
lows:

lxg — xcl? + |yg — ycl?

LocWeight(R) = exp(— o
L

where (Xz, Yz) is the center pixel of the image region R, and
(X¢» Vo) 1s the image center, and o,=max(W,, . H,_,.)/2.
In some example embodiments, the metrics module 930
may receive information (e.g., a user input from a mouse,
touchpad, touch screen, or the like) that identifies a user-
defined location and/or region within the image at which to
estimate a blur kernel. The metrics module 930 may define
and/or modify the weighting function LocWeight(R) as fol-
lows:

lxe —xi1* + |y — yil®

LocWeight(R) = exp(— 3
oL

where (X,, y;) is the pixel of the interest that user provided,
and o,=max(W,,,, H,,,,)/4. Accordingly, in an example
embodiment, a user may at least partially determine a
location at which a blur kernel is to be positioned.

In some example embodiments, the metrics module 930
may determine metrics for regions of varying sizes. For
example, small regions (e.g., regions less than a reference
size) of an image may include enough characteristics (e.g.,
edge orientations) to suitably perform blur kernel estimation.
The metrics module 930 may then determine metrics for the
small regions in order to reduce computation times, avoid
regions with corrupted pixels, and so on. Of course, the met-
rics module 930 may determine metrics for regions within an
image based on other processes, techniques, and/or algo-
rithms that include variables associated with edges, edge
orientations, and so on, within the regions.

In some example embodiments, the region selection mod-
ule 940 is configured to select a region based on the deter-
mined metrics at which to position the blur kernel during
deconvolution of the blurred image. For example, the region
selection module 940 may select the region or regions asso-
ciated with the highest values of the usefulness U(R) and/or
U'(R).

US 9,299,132 B2

15

In order to identify a suitable region, the region selection
module 940 may consider various region sizes (e.g., using a
pre-defined set of scale factors) along with the metrics asso-
ciated with the region sizes. When a suitable region is iden-
tified, the region selection module 940 may select the region
with the determined scale factor size and ignore other sizes.
However, if a suitable region, or a region not meeting defined
criteria, is not found, then the region selection module 940
multiplies a next scale factor with the blur kernel size, and
selects a region of that size, until a suitable or best region is
identified.

For example, the region selection module 940 may locate a
region with a large or largest usefulness U(R) or U'(R), and
determine whether the usefulness U(R) or U'(R) is greater
than a threshold value, t,, The threshold value t,, may define a
minimum or sufficient value for the suitability of a region at
which to estimate and/or apply a blur kernel. Thus, once the
metrics module 930 calculates metrics for some or all regions
of an image, the region selection module 940 may select the
region or regions having the highest usefulness U(R) or U'(R)
and/or any regions with a threshold value t,, above a reference
threshold t,,, t,=max(0.75 M, 4), which indicates a region is
suitable for blur kernel estimation.

FIG. 10 shows a screen shot 1000 of suggested regions for
automatically estimating a blur kernel. More particularly, the
screen shot 1000 shows a first region 1010 and a second
region 1015 at which to estimate a blur kernel. A blur kernel
1020 may be estimated for the first region 1010, and a blur
kernel 1025 may be estimated for the second region 1015. The
metrics module 930 may then, for example, determine which
of'the first and the second regions 1010, 1015 is more suitable
for estimating a blur kernel used to deblur the image. For
example, the regions may be selected based on a number of
edge orientations within each region

In an example embodiment, when the determined metrics
do not satisfy a threshold metric for selecting the region, the
size of the regions may be modified. For example, the size of
each of a plurality of regions may be modified, and metrics for
each the plurality of regions having a modified size may then
be determined. Thereafter, a region having the modified size
that is associated with a metric that satisfies the threshold
metric for estimating the blur kernel may be selected.

As described herein, in an example embodiment, the region
suggestion engine 160 may perform various techniques to
automatically select and/or determine a region within an
image at which to estimate a blur kernel and/or apply the blur
kernel to deblur the image. FIG. 11 is a flow diagram illus-
trating a method 1100, in accordance with an example
embodiment, for selecting a region in an image for estimating
a blur kernel. The method 1100 may be performed by the
region suggestion engine 160 and, accordingly, is described
herein merely by way of example with reference thereto. It
will be appreciated that the method 1100 may be performed
on any suitable hardware.

In operation 1110, the region suggestion engine 160
accesses a blurred image having a plurality of regions. One or
more of the regions may be blurred regions. In an example
embodiment, the blurred image may be accessed by the image
editing application 135, via the user interface 115 of the user
device 110.

In operation 1120, the region suggestion engine 160
defines a size for each of the plurality of regions. In some
example embodiments, the region suggestion engine 160 may
preprocess the blurred image by downsampling the image
with respect to the input blur kernel size, such as a size N, xN,.
The downsampling may reduce the image size and output a
downsampled image b,,,, having a size W, xH,, . The

10

15

20

25

30

35

40

45

50

55

60

65

16

downsampling may reduce computational time, may reduce
the blur, may reduce noise or artifacts, and so on.

In operation 1130, the region suggestion engine 160 deter-
mines metrics for at least two of the plurality of regions, the
metrics being based on a number of edge orientations within
each region. For example, the metrics module 930 may per-
form various algorithmic processes described herein to iden-
tify image characteristics and/or features associated with suit-
able regions within the accessed image. In an example
embodiment, the suitable regions may have contrast edges of
many different edge directions, few or no corrupted pixels
(e.g., saturated pixels), and so on. Example metrics may be
based on edge orientations, a gradient magnitude, a clip
weight, a location weight, and combinations thereof.

Thereafter, as shown, in operation 1140, the region sug-
gestion engine 160 selects a region, based on the determined
metrics, at which to estimate and/or position the blur kernel
during deconvolution of the blurred image. For example, the
region selection module 940 may select the region or regions
associated with the highest usefulness metric U(R) and/or
U'(R) values. FIG. 12 is an example of a blurred image 1200
showing positioning of an example blur kernel 1220 at a
selected region 1210 of the blurred image 1200.

The method 1100 may then, as shown in operation 1150,
estimate a blur kernel for deblurring the image based on the
selected region. Thereafter, as shown in operation 1160, the
image may be deblurred using the blur kernel.

As described herein, in some example embodiments, the
region suggestion engine 160 may identify multiple suitable
regions in the blurred image 1200 for blur kernel estimation.
To this end, in an example embodiment the region selection
module 940 may determine whether any of the identified
regions overlap and, if the regions overlap by more than a
certain ratio or reference amount, other suitable regions may
then be selected for blur kernel estimation.

In some example embodiments, the region suggestion
engine 160 may determine a metric for a single region within
the image (e.g., a user-defined or center region), and, if the
metric indicates the region is suitable for blur kernel estima-
tion, select the single region without calculating metrics for
other regions of the image.

Thus, the region suggestion engine 160 may select a region
within an image at which to estimate and/or position a blur
kernel, in order to deblur the image.

Examples of Deblurring Images Having Spatially Varying
Blur

Taking handheld photos (e.g., using a smartphone, a
mobile device, or a camera) in low-light conditions may be
challenging, as longer exposure times are needed, often lead-
ing to blurred photos due to the shaking of the camera. Photos
taken of scenes having depth variation may have different
spatially varying blur, because objects far away from the
camera will be less blurred than objects closer to the camera.
Accordingly, in an example embodiment, the image editing
application 135 may utilize multiple blur kernels to deblur the
photos. For example, a blur kernel may be provided for each
different blurred region within an image. Because differences
between blur kernels for an image with spatially varying blur
may be small, the image editing application 135 may deblur a
single, local, region within an image using an associated static
blur kernel. Different blur kernels may then be used in other
regions and the deblurred results may be combined or stitched
together to form a final deblurred image (e.g., see FIG. 15).

FIG. 13 is a block diagram of example components of an
image deblurring engine 140, in accordance with an example
embodiment, to reduce (ideally remove) spatially varying
blur using multiple blur kernels. In some example embodi-

US 9,299,132 B2

17

ments, the image deblurring engine 140 may include one or
more modules implemented in hardware, software, or a com-
bination of hardware and software, and that may be executed
by one or more processors. The image deblurring engine 140
is shown, by way of example, to include an image module
1310, a blur kernel module 1320, a kernel positioning module
1330, and a deblurring module 1340.

In some example embodiments, the image module 1310 is
configured to access an image having multiple blurred
regions (e.g., two or more), such as a first blurred region and
a second blurred region. For example, the image module
1310, which may be similar to the image module 210 and/or
image module 910, may access a blurred image resident on a
local device, in the cloud, or otherwise. In an example
embodiment, the image module 1310 accesses an image input
to the image editing application 135, via the user interface
115 of the user device 110.

In some example embodiments, the blur kernel module
1320 is configured (e.g., programmed) to generate a first blur
kernel for the first blurred region and a second blur kernel for
the second blurred region. For example, the blur kernel mod-
ule 1320 may generate and/or determine local blur kernels for
some or all of the blurred regions within the image using
techniques described herein.

In some example embodiments, the image editing applica-
tion 135 may provide a graphical user interface (GUI), such as
one or more of the various user interfaces described herein,
configured to receive input from a user that specifies local
regions within the image for blur kernel estimation. For
example, in response to a user providing input (e.g., drawing
a box on the image via the GUI, centered at (x,y)), the blur
kernel module 1320 may analyze the image content within the
identified region to estimate a static or local blur kernel K for
the region. The blur kernel module 1320, which may use
various techniques for generating blur kernels, such as those
described herein, may then create a list of local kernels K,
K., , K, which are created from regions centered at (x,,
V1); (X5, V), - -+ 5 (X,,, ¥,,)- In other example embodiments, the
image editing application 135 may perform the techniques
described herein to automatically suggest the local regions
for kernel estimation. Thus, the blur kernel module 1320 may
generate a group of local blur kernels that are used to at least
partially (ideally satisfactorily) deblur a local region. Thus, a
single blur kernel is not used to deblur all blurred regions of
entire image.

In some example embodiments, the kernel positioning
module 1330 is configured to position the first blur kernel
with respect to the first blurred region and position the second
blur kernel with respect to the second blurred region based on
the position of the first blur kernel. For example, the kernel
positioning module 1330 may align the local blur kernels with
respect to each other.

Given a list of generated blur kernels, K, K,, . . ., K,
which correspond to local blurred regions within the image,
the kernel positioning module 1330 may identify a blur kernel
K_havinga center position (X, y,.) that is closest to a center of
the image or closest to a focal point of the image (e.g., a focal
point identified from metadata associated with the image).
Thereafter, the remaining blur kernels are positioned relative
to the blur kernel K, which may define a center kernel or base
kernel.

For example, for a local blur kernel K, that is created from
a region centered at (X,, y,), the kernel positioning module
1330 may identify an optimal shift (dx*, dy*), as follows:

15

25

30

40

45

55

18

0x*. 0y") = argglg};zy] Kel(e, 3)- K+ 02, y +6).

where X, y iterate over all pixels in the kernel. In example
embodiment, the kernel positioning module 1330 may
thus ideally determine an optimal shift between the blur
kernel (x,, y,) and the base kernel K_ that results in an
enhanced (ideally a maximum or high) correlation
between the base kernel K_ and the local blur kernel K.

In some example embodiments, the deblurring module
1340 is configured (e.g., programmed) to deconvolve the first
blurred region with the first blur kernel and deconvolve the
second blurred region with the second blur kernel. For
example, the deblurring module 1340 may perform tile-based
multi-kernel deconvolution to deblur the entire image using
the aligned, local, static kernels. Tile-based multi-kernel
deconvolution may comprise dividing up a blurred image into
a plurality of regions or tiles that do not overlap. In an
example embodiment, the tiles may be rectangular or square
tiles that are arranged in a grid. For example, the tile size can
be a fixed number, such as 512 by 512 pixels.

In an example embodiment, the deblurring module 1340
uses each local kernel K, to generate a deconvolution result L,
for each local region (e.g., tile) of the image, and may blend
the deconvolution results (L;s) together, using various tech-
niques, to form a final, deblurred image.

FIG. 14 is a flow diagram illustrating a method 1400, in
accordance with an example embodiment, for deblurring a
blurred image. The method 1400 may be performed by the
image deblurring engine 140 and, accordingly, is described
herein merely by way of example with reference thereto.
However, it will be appreciated that the method 1400 may be
performed on any suitable hardware.

The method 1400 is shown to commence at operation 1410
wherein the image deblurring engine 140 accesses an image
having a first blurred region (e.g., centered at (x,,y,)) and a
second blurred region (e.g., centered at (X5, V,)). Thus, the
image module 1310 may access a blurred image having spa-
tially varying blur, such as two or more blurred regions that
are spatially offset.

Thereafter, in operation 1420, a first blurkernel (e.g., K,) is
generated for the first blurred region and a second blur kernel
(e.g., K,) is generated for the second blurred region. When
multiple blurred regions are present, the blur kernel module
1320 may generate further local blur kernels for each of the
blurred regions within the image. The first blur kernel is
positioned with respect to the first blurred region, and the
second blur kernel is positioned with respect to the second
blurred region based on the position of the first blur kernel
(see operations 1430 and 1440). For example, the kernel
positioning module 1330 may consider the first blur kernel as
a base or center kernel, and locate, position, and/or align the
second blur kernel with respect to non-zero elements of the
first blur kernel such that an optimal shift between the second
blur kernel and the base kernel is maximized or highly cor-
related.

FIG. 15 is an example blurred image 1500 showing posi-
tioning of multiple blur kernels, in accordance with an
example embodiment, at multiple blurred regions of the
image 1500. As shown by way of example, a blur kernel 1515
is positioned proximate to a region 1510, a blur kernel 1525 is
positioned proximate to a region 1520, a blur kernel 1535 is
positioned proximate to a region 1530, and a blur kernel 1545
is positioned proximate to a region 1540. Although the
method 1400 is described with reference to two blur kernels,

US 9,299,132 B2

19

it is to be appreciated that multiple blur kernels may be
utilized (e.g., four blur kernels are shown by way of example
in FIG. 15).

As shown in operation 1450, the image may be deblurred
by deconvolving the first blurred region (e.g., region 1510)
with the first blur kernel (e.g., blur kernel 1515) and decon-
volving the second blurred region (e.g., region 1520) with the
second blur kernel (e.g., blur kernel 1525). For example, the
deblurring module 1340 may generate a deconvolution result
for the first blurred region and generate a deconvolution result
for the second blurred region, and blend the results to create
a final, deblurred image. In a similar fashion, deconvolution
of further blur kernels and further blurred regions may take
place (e.g., regions 1530 and 1540 with blur kernels 1535 and
1545). Deconvolution, as described herein, is intended to
include a reverse operation of a convolution operation, and,
therefore, may reverse, change, and/or modify blur, distor-
tion, or other imperfections in images.

In the example blurred image 1500, blurred regions 1510
and 1530 are shown by way of example to overlap in region
1528. In such circumstances where two or more blurred
regions overlap, the deblurring module 1340 may perform a
variety of different techniques when blending deconvolution
results to create a final, deblurred image. For example, FIG.
16A shows a diagram 1600 that displays a blending region
1615 between a first region 1610 occupied by a first blur
kernel (e.g., blur kernel K1) and a second region 1620 occu-
pied by a second blurkernel (blur kernel K2), wherein the first
and second regions 1610, 1620 overlap. The first region 1610
is shown to be centered at (x,, y,) in the image and the second
region 1620 is centered at (X,, ¥,) in the image. For example,
using the methodology described herein, deconvolution
results L, and L, may be determined using blur kernels K, and
K, having centers at pixels (x,, y,) and (X,, ¥,), respectively,
in the blurred image.

For any given pixel (x,y), in an overlapping or blending
region 1615, the deblurring module 1340 may assign two
different weights, w, and w,, and determine a color for the
pixel (x,y) as follows:

CEyywi L xy)+wsLoxy),

which is a linear interpolation between the two resultant
images L, and L, that include the pixel.

To determine the weights, a spatial distance between the
pixel and the two kernel centers ((x;, y;), (X,, ¥,)) may be
calculated. The spatial distance may be denoted by d,; and
d,,, and the weights may be computed as follows:

W1=1,W2=0 ifd1+D<d2
w=0,w, =1 if dy+D<d
dy—dp
wy =0.5- ,wy =1 —wy, esle

where D is a distance threshold, (e.g., 20 pixels). Thus,
when the given pixel (x,y) is close to the center of kernel
K1 in the first region 1610, but is far away (e.g., greater
than a reference distance) from the center of kernel K2 in
the second region 1620, then w,=1 and w,=0, the pixel
will have a color similar to the color of L. On the other
hand, when the pixel is far away from the center of kernel
K1, and is close to the center of kernel K2, the pixel may
have a color similar to the color of L,. However, when
the pixel is located within the blending region 1615,
having a width D and located between the two kernels
K1, K2, the pixel at (x,y) will have a color that is a linear

10

15

20

25

30

35

40

45

50

55

60

65

20

blend of'the corresponding colors from L., and L,. Thus,
the deblurring module 1340 may linearly blend resultant
image portions [, and L., and perform a final deconvo-
Iution result for the entire image. It should be noted that,
in other embodiments, other interpolation techniques
are utilized.

In some example embodiments where a pixel is common to
more than two kernels, blending weights may be determined
for all kernels that include the pixel. For example, given m
kernels K, K,, .. ., K,,, weights between any pair of kernels
as w,, 1, je{1, ..., m} may be determined. For example, the
deblurring module 1340 may determine an un-normalized
weight w, for Kernel i as follows:

W =W Wi oo Wiy

The deblurring module 1340 may then normalize the
weights using the sum of the un-normalized weights as:

and utilize the weights to linearly blend the pixel colors of all
L,s for the pixel. This weighting functionality may, for
example, be applied to the example kernels 1515, 1525, 1535
and 1545 of the blurred image 1500 (see FIG. 15).

In some example embodiments, the deblurring module
1340 may utilize an efficient, tile-based blending technique,
where tiles (e.g., groups of pixels) are blended between ker-
nels. An example of a tile-based blending is shown in FIG.
16B. More particularly, FIG. 16B shows a diagram 1650 that
displays a blending region 1675 between a first region 1660
occupied by a first blur kernel K1 and a second region 1670
occupied by a second kernel K2. An image tile (e.g., Tile 1 or
Tile 2) may be defined having four corner locations at P1, P2,
P3 and P4. Blending weights may then be determined for the
four corner locations P1, P2, P3 and P4. When the four corner
locations P1, P2, P3 and P4 are located in a single (the same)
kernel (e.g., have a weighted value of 1 for the same kernel,
and have a weighted value O for all other kernels), it is
assumed that the tile is located entirely within a single kernel
region (e.g., Tile 1), and the single kernel is then used to
deconvolve the entire tile.

However, when the four locations P1, P2, P3 and P4 of the
corners have different weights for different kernels, the tile
may then be assumed to be located within two or more kernel
regions (e.g., Tile 2). The weights of the four corner locations
P1, P2, P3 and P4 may be examined in order to identify all
kernels that have non-zero weights with the tile, determine the
corresponding blending results for the kernels, and linearly
blend the kernels in order to deblur the entire image with
smooth transitions in color between different regions of the
image.

Thereafter, the deblurring module 1340 may stitch regions
together, using various techniques to form complete
deblurred images. Stitching regions together may include
computing multiple colors for a pixel, each associated with an
estimated blur kernel, and finally computing a weighted aver-
age of these colors as its final color.

Thus, in some example embodiments, the image deblur-
ring engine 140 may deblur an image having spatially varying
blur using multiple kernels and wherein the kernels may be
aligned with respect to one another. Blending regions within
the image that include pixels associated with multiple kernels
may be deconvolved using weights that are dependent upon
pixel distances from local kernels.

US 9,299,132 B2

21

Examples of Graphical User Interfaces for Managing Blur
Kernels

In an example embodiment, a display interface and a
method for presenting editing controls for deblurring an
image are provided. The display interface and the method
may form part of the image editing application 135 and,
various user interface screens may be provided that facilitate
the management of blur kernels used to deblur images.

Referring to FIG. 17, a graphical user interface (GUI)
1700, in accordance with an example embodiment, is pro-
vided for editing images (e.g., photos in a photo library). The
GUI 1700 may be displayed on a mobile device (e.g., a tablet
computer, smartphone or the like) or any other computing
device. The GUI 1700 is shown to include a display zone 1710
that displays an image 1715, such as a blurred image, and a
control zone 1720 that includes various user input controls or
features that are used to deblur and/or otherwise edit the
image 1715. For example, the control zone 1720 is shown to
include various blur trace settings 1725, a blur kernel zone
1727, and an image detail zone 1729. The blur kernel zone
1727 is shown by way of example to include a blur trace
pounds slider, which may specify a size of the blur kernel
(e.g., if the slider is set to 41, then the size of the blur kernel
is setto 41x41 pixels), a smoothing slider, which may specify
how smooth the deblurred result will be, or how much noise
is suppressed in the deblurred result, and an artifact suppres-
sion slider, which may specify how much of the deblurring
artifacts (e.g., ringing artifacts, will be suppressed). In other
example embodiments, different and/or additional settings
are provided using sliders and/or other adjustment arrange-
ments. The blur kernel zone 1727 is shown, by way of
example, to display three visualizations of blur kernels. More
particularly, blur kernels 1730, 1732 and 1734 may be applied
to the image 1715 to deblur blurred regions of the image 1715.
In an example embodiment, the blur kernels 1730, 1732 and
1734 are generated using the methods described herein. The
image detail zone 1729 shows an exploded view of a region
1716 of the image 1715.

In some example embodiments, parameters or aspects
(e.g., size) of the blur kernels 1730, 1732 and 1734, that are
displayed within the blur kernel zone 1727, are automatically
configured or defined without user input. Further, regions in
the image 1715 (e.g., the blurred region 1716) at which to
apply blurkernels (e.g., the blurkernels 1730, 1732 and 1734)
may be automatically determined and identified using the
techniques described herein. Examples of components of a
display interface that generates the GUI 1700 are shown in
FIG. 18.

More particularly, a display interface 1800, in accordance
with an example embodiment, is shown by way of example to
include an access module 1810 and a display module 1820.
The access module 1810 is configured (e.g., by a processor
executing instructions) to access a blurred image (e.g., access
image data defining pixels of an image), and the display
module 1820 is configured by at least one processor to display
a graphical user interface for deblurring regions of the image.
In an example embodiment, the display interface 1800 may
generate the GUI 1700 and, accordingly, the display module
1820 may be configured to cause the display of the display
zone 1710 and the control zone 1720 adjacent to the display
zone 1710. It should be noted that the position of the control
zone 1720 relative to the display zone 1710 may vary from
one embodiment to another. Thus, the control zone 1720 may
be below, on top of, or otherwise positioned relative to the
display zone 1710. The display module 1820 is configured to
display a user selected image (e.g., the blurred image 1715),
display one or more suggested blur kernels (e.g., the blur

10

15

20

25

30

35

40

45

50

55

60

65

22

kernels 1730, 1732 and 1734) in the control zone 1720, and
display an association between a selected blur kernel and a
blurred region (e.g., the blurred region 1716). The access
module 1810 and the display module 1820 may be imple-
mented in hardware, software, or a combination of hardware
and software, and may be executed by one or more proces-
sors. In some example embodiments, the access module 1810
is configured to access a blurred image stored locally and/or
remotely. For example, the access module 1810 may be simi-
lar to the image module 210, the image module 910, and/or
image module 1310.

The display module 1820 may cause the blurred image
1715 to be displayed within the display zone 1710, as well as
an indication of an automatically suggested region (e.g., the
blurred region 1716) at which to estimate and/or apply a blur
kernel. The display module 1820 may also be configured to
cause the display of user input controls to allow a user to edit
and deblur images. For example, the display module 1820
may cause various editing buttons, sliders or the like to be
displayed within the control zone 1720 that are used to edit
the image 1715. In an example embodiment, proposed blur
kernels are automatically generated and displayed in the blur
kernel zone 1727, and the display module 1820 monitors user
interaction with the GUI 1700 and deblurs the blurred image
1715 responsive to the user interaction. In an example
embodiment, the display module 1820 may render and/or
cause blur kernels to be displayed within the blur kernel zone
1727, and/or cause the blur trace settings 1725 to be displayed
within the control zone 1720.

FIG. 19 is a flow diagram of a method 1900, in accordance
with an example embodiment, for presenting editing controls
for deblurring an image. The method 1900 may be performed
by the image editing application 135 and/or the display inter-
face 1800 and, accordingly, is described herein merely by
way of reference thereto. It will be appreciated that the
method 1900 may be performed on any suitable hardware.

The method 1900, in operation 1910, causes display of a
graphical user interface configured to be used to deblur an
image. The graphical user interface may include a display
zone and a control zone adjacent to the display zone. A user
selected image is displayed in the display zone as shown in
operation 1920. Thereafter, a suggested blur kernel is dis-
played in the control zone (see operation 1930), the blur
kernel being associated with a blurred region in the selected
image. In an example embodiment, in addition to displaying
the blur kernel (or a plurality of blur kernels) in the control
zone, the suggested blur kernel is also displayed proximate
the associated blurred region in the display zone (see opera-
tion 1832).

Displaying the suggested blur kernel proximate the asso-
ciated region may comprise overlaying the blur kernel on the
blurred region. Further, the method 1900 may display a plu-
rality of blur kernels in the control zone (e.g., see FIG. 17)
wherein each of the plurality of blur kernels is associated with
a corresponding blurred region, as described in further detail
below. As described herein, in some example embodiments,
the image editing application 135, via the GUI 1700, provides
various user input controls (e.g., controls of control zone
1720) that facilitate management of blur kernels.

In some example embodiments, the GUI 1700 may provide
visual elements and/or objects associated with some or all of
the blur kernels to be utilized in deblurring an image. For
example, the blur kernel zone 1727 may provide a kernel
thumbnail list in which all kernels are represented by “thumb-
nails” of kernel images. The blur kernel zone 1727 may
provide visualizations for all blur kernels as well as their
relationship with the image 1715. FIGS. 20A-20B are

US 9,299,132 B2

23

exploded views of'the blur kernel zone 1727 of'the GUI 1700
shown FIG. 17. The blur kernel zone 1727 is shown to include
three blur kernels but it is to be appreciated that fewer or more
blur kernels may be present. Further, in order to select or
deselect a particular blur kernel 1730, 1732 or 1734, check-
boxes 1742, 1744 and 1746 are provided. Hence, using the
GUI 1700, a user may manage which blur kernels are used to
deblur various blurred regions in an image. In order to allow
auser to add further blur kernels, an add feature in the form of
a“+”button 1748 is provided. When the user clicks on the “+”
button a further blur kernel is added to the blur kernel zone
1727. Likewise, the GUI 1700 may include a feature (e.g., a
button) to remove blur kernels from the blur kernel zone
1727. The parameters (e.g., size, location, etc) may be auto-
matically determined using the methodologies described
herein. When a checkbox 1740 is selected, then regions in the
image (e.g., the blurred region 1716) that correspond to a blur
kernel are shown. In some example embodiments, as shown
in FIG. 20B, when a user selects or otherwise identifies (e.g.,
by a mouse cursor hovering over) a blur kernel, the blur kernel
is enlarged. In FIG. 20B blur kernel 1732 is shown to be
enlarged.

In an example embodiment, drag-and-drop functionality is
provided that allows a user to drag a blur kernel (e.g., one or
more of the blur kernels 1730, 1732 and 1734) and drop it at
a position or location in the blurred image 1715. Deblurring
of the image may then be automatically performed. In an
example embodiment, a user may identify a blurred region in
the display zone 1710 (e.g., the blurred region 1716) using a
pointer of a mouse, a finger on a touch screen, or the like), and
suggested blur kernels for the selected blurred region may
then be automatically determined and displayed in the blur
kernel zone 1727. Estimation of the size and other parameters
of'the blur kernel may be done using any of the methodologies
described herein. The GUI 1700 may provide controls to
create, edit, and/or delete blur kernels (e.g., see buttons 1702
and 1704 in FIG. 17). In an example embodiment, the user
may draw a rectangle around a blurred region of the image to
select the blurred region. Thus, in an example embodiment, a
blur boundary indicator and a kernel boundary indicator may
be displayed on the selected image. The blur boundary indi-
cator may identify a size of the blurred region to be processed,
and the kernel boundary indicator may identify a size of the
associated blur kernel. Accordingly, in an example embodi-
ment, the blur boundary indicator and the kernel boundary
indicator may show the relative sizes of the blurred region and
the blur kernel.

In some example embodiments, the image editing applica-
tion 135 may automatically suggest the region and create the
blur kernel for the region, as described herein. For example,
the image editing application 135 may identify a preferable
(ideally best) region within the image at which to estimate the
blur kernel. Accordingly, the functionality described in the
method 300, wherein a suggested size for a blur kernel is
determined, may be performed using the example GUI 1700.
The GUI 1700 may also be used in performing the other
methodologies described herein.

In some example embodiments, the GUI 1700 may provide
interactive elements and/or indicators that reveal regions
within an image that are associated with a blur kernel.
Example indicators may include indicators that identify
whether a kernel is activated (e.g., a box is checked next to the
kernel or a circle within a center of a box identifying a region
is highlighted), a blur selection ring around a blur kernel is
displayed, the blur kernel and/or the associated region is
highlighted in response to a mouse hovering over the region
or the blur kernel, and so on.

10

15

20

25

30

35

40

45

50

55

60

65

24

In some example embodiments, the GUI 1700 may provide
controls used to zoom in or out of blur kernels at various levels
of'granularity. FIG. 20C shows an exploded view of the kernel
zone 1727 where a user has activated an option menu 1750
(e.g., using a right-click function on a mouse or any gesture).
The example option menu 1750 is shown to include functions
including “Start Estimation,” “Scroll to Estimation Region,”
“Show Blur Trace on Image,” “Save Blur Trace . . . ” and
“Delete Blur Trace.” For example, when the “Show Blur
Trace on Image” option is selected, a corresponding blur
kernel image may be overlaid on the image. Various other
functions associated with deblurring an image may be pro-
vided in other example embodiments.

As mentioned above, a plurality of blur kernels may be
displayed in the control zone, each of the plurality of blur
kernels being associated with a corresponding blurred region.
Each of the plurality of blur kernels may then be displayed
proximate its associated blurred region in the display zone.

In an example embodiment, the display zone (e.g., the
display zone 1710) defines a preview canvas for displaying
changes to a selected image (e.g., the blurred image 1715)
responsive to changes in one or more blur kernel parameters
(e.g., using functionality provided in the control zone 1720).
The GUI 1700 may also provide functionality to allow a user
to define or input kernel parameters. These parameters may
allow a user to modify at least one parameter of the blur
kernel. An example of such an input is the size of the blur
kernel, and the image in the display zone may then be modi-
fied in response to a variation in the at least one parameter.

As mentioned above, displaying the suggested blur kernel
proximate the associated region may comprise overlaying a
blurkernel onthe blurred region (e.g., the blurred region 1716
of the blurred image 1715). FIG. 21 is a GUI 2100, in accor-
dance with an example embodiment, illustrating an overlay of
ablurkernel 2110 on an associated image. The GUI 2100 may
display the blur kernel 2110 within the display zone with the
same zoom level of the display zone 1710, which provides
information as to the relative size between the blur kernel
2110 and the blurred region (e.g., the blurred region 1716) in
the blurred image 1715. A user may be able to zoom in or out
on the blur kernel 2110 at arbitrary levels. Also, the blur
kernel 2110 or blur trace is generally similar to the blur within
the image 1715, and displaying the blur kernel 2110 proxi-
mate to the image 1715 may enable the user to review the
quality of the kernel estimation with respect to the image
1715.

FIG. 22 is a block diagram illustrating components of a
machine 2200, according to some example embodiments,
able to read instructions from a machine-readable medium
(e.g., a machine-readable storage medium) and perform any
one or more of the methodologies discussed herein, in whole
or in part. Specifically, FIG. 22 shows a diagrammatic repre-
sentation of the machine 2200 in the example form of a
computer system and within which instructions 2224 (e.g.,
software, a program, an application, an applet, an app, or
other executable code) for causing the machine 2200 to per-
form any one or more of the methodologies discussed herein
may be executed. In alternative embodiments, the machine
2200 operates as a stand-alone device or may be connected
(e.g., networked) to other machines. In a networked deploy-
ment, the machine 2200 may operate in the capacity of a
server machine or a client machine in a server-client network
environment, or as a peer machine in a peer-to-peer (or dis-
tributed) network environment. The machine 2200 may be a
server computer, a client computer, a personal computer
(PC), a tablet computer, a laptop computer, a netbook, a
set-top box (STB), a personal digital assistant (PDA), a cel-

US 9,299,132 B2

25

Iular telephone, a smartphone, a web appliance, a network
router, a network switch, a network bridge, or any machine
capable of executing the instructions 2224, sequentially or
otherwise, that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include a collection of
machines that individually or jointly execute the instructions
2224 to perform any one or more of the methodologies dis-
cussed herein.

The machine 2200 includes a processor 2202 (e.g., a cen-
tral processing unit (CPU), a graphics processing unit (GPU),
a digital signal processor (DSP), an application specific inte-
grated circuit (ASIC), a radio-frequency integrated circuit
(RFIC), or any suitable combination thereof), a main memory
2204, and a static memory 2206, which are configured to
communicate with each other via a bus 2208. The machine
2200 may further include a graphics display 2210 (e.g., a
plasma display panel (PDP), a light emitting diode (LED)
display, a liquid crystal display (LCD), a projector, or a cath-
ode ray tube (CRT)). The machine 2200 may also include an
alphanumeric input device 2212 (e.g., a keyboard), a cursor
control device 2214 (e.g., a mouse, a touchpad, a trackball, a
joystick, a motion sensor, or other pointing instrument), a
storage unit 2216, a signal generation device 2218 (e.g., a
speaker), and a network interface device 2220.

The storage unit 2216 includes a machine-readable
medium 2222 on which is stored the instructions 2224
embodying any one or more of the methodologies or func-
tions described herein. The instructions 2224 may also reside,
completely or at least partially, within the main memory
2204, within the processor 2202 (e.g., within the processor’s
cache memory), or both, during execution thereof by the
machine 2200. Accordingly, the main memory 2204 and the
processor 2202 may be considered as machine-readable
media. The instructions 2224 may be transmitted or received
over a network 2226 (e.g., network 120 of FIG. 1) via the
network interface device 2220.

As used herein, the term “memory” refers to a machine-
readable medium able to store data temporarily or perma-
nently and may be taken to include, but not be limited to,
random-access memory (RAM), read-only memory (ROM),
buffer memory, flash memory, and cache memory. While the
machine-readable medium 2222 or computer-readable
medium is shown in an example embodiment to be a single
medium, the term “machine-readable medium” or “com-
puter-readable medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, or associated caches and servers) able to store
instructions 2224. The term “machine-readable medium” or
“computer-readable medium” shall also be taken to include
any medium, or combination of multiple media, that is
capable of storing instructions (e.g., instructions 2224) for
execution by a machine or computer (e.g., machine 2200),
such that the instructions, when executed by one or more
processors of the machine or computer (e.g., processor 2202),
cause the machine or computer to perform any one or more of
the methodologies described herein. Accordingly, a
“machine-readable medium” refers to a single storage appa-
ratus or device, as well as “cloud-based” storage systems or
storage networks that include multiple storage apparatuses or
devices. The term “machine-readable medium” shall accord-
ingly be taken to include, but not be limited to, one or more
data repositories in the form of a solid-state memory, an
optical medium, a magnetic medium, or any suitable combi-
nation thereof.

Throughout this specification, plural instances may imple-
ment components, operations, or structures described as a

20

25

30

40

45

55

65

26

single instance. Although individual operations of one or
more methods are illustrated and described as separate opera-
tions, one or more of the individual operations may be per-
formed concurrently, and nothing requires that the operations
be performed in the order illustrated. Structures and function-
ality presented as separate components in example configu-
rations may be implemented as a combined structure or com-
ponent. Similarly, structures and functionality presented as a
single component may be implemented as separate compo-
nents. These and other variations, modifications, additions,
and improvements fall within the scope of the subject matter
herein.

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied on a machine-readable medium or in a transmis-
sion signal) or hardware modules. A “hardware module” is a
tangible unit capable of performing certain operations and
may be configured or arranged in a certain physical manner.
In various example embodiments, one or more computer
systems (e.g., a standalone computer system, a client com-
puter system, or a server computer system) or one or more
hardware modules of a computer system (e.g., a processor or
a group of processors) may be configured by software (e.g.,
an application or application portion) as a hardware module
that operates to perform certain operations as described
herein.

In some example embodiments, a hardware module may be
implemented mechanically, electronically, or any suitable
combination thereof. For example, a hardware module may
include dedicated circuitry or logic that is permanently con-
figured to perform certain operations. For example, a hard-
ware module may be a special-purpose processor, such as a
field programmable gate array (FPGA) or an ASIC. A hard-
ware module may also include programmable logic or cir-
cuitry that is temporarily configured by software to perform
certain operations. For example, a hardware module may
include software encompassed within a general-purpose pro-
cessor or other programmable processor. It will be appreci-
ated that the decision to implement a hardware module
mechanically, in dedicated and permanently configured cir-
cuitry, or in temporarily configured circuitry (e.g., configured
by software) may be driven by cost and time considerations.

Accordingly, the phrase “hardware module” should be
understood to encompass a tangible entity, be that an entity
that is physically constructed, permanently configured (e.g.,
hardwired), or temporarily configured (e.g., programmed) to
operate in a certain manner or to perform certain operations
described herein. As used herein, “hardware-implemented
module” refers to a hardware module. Considering embodi-
ments in which hardware modules are temporarily configured
(e.g., programmed), each of the hardware modules need not
be configured or instantiated at any one instance in time. For
example, where a hardware module comprises a general-
purpose processor configured by software to become a spe-
cial-purpose processor, the general-purpose processor may
be configured as respectively different special-purpose pro-
cessors (e.g., comprising different hardware modules) at dif-
ferent times. Software may accordingly configure a proces-
sor, for example, to constitute a particular hardware module at
one instance of time and to constitute a different hardware
module at a different instance of time.

Hardware modules can provide information to, and receive
information from, other hardware modules. Accordingly, the
described hardware modules may be regarded as being com-
municatively coupled. Where multiple hardware modules
exist contemporaneously, communications may be achieved

US 9,299,132 B2

27

through signal transmission (e.g., over appropriate circuits
and buses) between or among two or more of the hardware
modules. In embodiments in which multiple hardware mod-
ules are configured or instantiated at different times, commu-
nications between such hardware modules may be achieved,
for example, through the storage and retrieval of information
in memory structures to which the multiple hardware mod-
ules have access. For example, one hardware module may
perform an operation and store the output of that operation in
a memory device to which it is communicatively coupled. A
further hardware module may then, at a later time, access the
memory device to retrieve and process the stored output.
Hardware modules may also initiate communications with
input or output devices, and can operate on a resource (e.g., a
collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by software)
or permanently configured to perform the relevant operations.
Whether temporarily or permanently configured, such pro-
cessors may constitute processor-implemented modules that
operate to perform one or more operations or functions
described herein. As used herein, “processor-implemented
module” refers to a hardware module implemented using one
Of More Processors.

Similarly, the methods described herein may be at least
partially processor-implemented, with a processor being an
example ofhardware. For example, at least some of the opera-
tions of a method may be performed by one or more proces-
sors or processor-implemented modules. Moreover, the one
or more processors may also operate to support performance
of the relevant operations in a “cloud computing” environ-
ment or as a “software as a service” (SaaS). For example, at
least some of the operations may be performed by a group of
computers (as examples of machines including processors),
with these operations being accessible via a network (e.g., the
Internet) and via one or more appropriate interfaces (e.g., an
API).

The performance of certain of the operations may be dis-
tributed among the one or more processors, not only residing
within a single machine, but deployed across a number of
machines. In some example embodiments, the one or more
processors or processor-implemented modules may be
located in a single geographic location (e.g., within a home
environment, an office environment, or a server farm). In
other example embodiments, the one or more processors or
processor-implemented modules may be distributed across a
number of geographic locations.

Some portions of the subject matter discussed herein may
be presented in terms of algorithms or symbolic representa-
tions of operations on data stored as bits or binary digital
signals within a machine memory (e.g., a computer memory).
Such algorithms or symbolic representations are examples of
techniques used by those of ordinary skill in the data process-
ing arts to convey the substance of their work to others skilled
in the art. As used herein, an “algorithm™ is a self-consistent
sequence of operations or similar processing leading to a
desired result. In this context, algorithms and operations
involve physical manipulation of physical quantities. Typi-
cally, but not necessarily, such quantities may take the form of
electrical, magnetic, or optical signals capable of being
stored, accessed, transferred, combined, compared, or other-
wise manipulated by a machine. It is convenient at times,
principally for reasons of common usage, to refer to such
signals using words such as “data,” “content,” “bits,” “val-

ues,” “elements,” “symbols, terms,” “‘num-

2 < 2 < 2 <

characters,

2 <

10

15

20

25

30

35

40

45

50

55

60

65

28

bers,” “numerals,” or the like. These words, however, are
merely convenient labels and are to be associated with appro-
priate physical quantities.

Unless specifically stated otherwise, discussions herein
using words such as “processing,” “computing,” “calculat-
ing,” “determining,” “presenting,” “displaying,” or the like
may refer to actions or processes of a machine (e.g., a com-
puter) that manipulates or transforms data represented as
physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non-
volatile memory, or any suitable combination thereof), regis-
ters, or other machine components that receive, store, trans-
mit, or display information. Furthermore, unless specifically
stated otherwise, the terms “a” or “an” are herein used, as is
common in patent documents, to include one or more than
one instance. Finally, as used herein, the conjunction “or”
refers to a non-exclusive “or,” unless specifically stated oth-
erwise.

Of course, the functions described herein for any single
machine, database, or device may be subdivided among mul-
tiple machines, databases, or devices. As used herein, a “data-
base” is a data storage resource and may store data structured
as a text file, a table, a spreadsheet, a relational database (e.g.,
an object-relational database), a triple store, a hierarchical
data store, or any suitable combination thereof.

What is claimed is:

1. A computer-implemented method, comprising:

accessing an image having at least one blurred region;

automatically, without user input, determining a first value
for a first size for a blur kernel for the at least one blurred
region;

automatically, without user input, determining a second

value for a second size for the blur kernel for the at least
one blurred region;

determining a suggested size for the blur kernel based on

the first value and the second value; and

deblurring the accessed image by deconvolving the at least

one blurred region with the blur kernel of the suggested
size.

2. The method of claim 1, wherein different mathematical
algorithms are used to determine the first and second values.

3. The method of claim 1, wherein the first value for the first
size of the blur kernel is determined by an autocorrelation-
based size estimator, and the second value for the second size
of the blur kernel is determined by a latent image-based size
estimator.

4. The method of claim 1, further comprising:

generating a derivative image from the accessed image;

autocorrelating the derivative image and the accessed

image to obtain an autocorrelation result; and
determining the first size for the blur kernel from the auto-
correlation result.

5. The method of claim 4, wherein the determining of the
first size is derived from nonzero elements of the autocorre-
lation result.

6. The method of claim 5, wherein the autocorrelation
result is filtered to remove nonzero elements less than a
threshold value.

7. The method of claim 1, wherein determining the first
value for the first size for the blur kernel includes:

calculating a derivative image for the accessed image;

determining an autocorrelation map for the derivative
image; and

identifying a connected component of nonzero elements

displayed in the autocorrelation map, wherein determin-
ing the second value for the second size of the blur kernel
includes:

2 <

US 9,299,132 B2

29

determining a latent image for the accessed image;

estimating a blur kernel from the latent image; and

identifying a connected component of nonzero elements
displayed in the estimated blur kernel.

8. The method of claim 1, further comprising:

applying a shock filter to the accessed image to restore

sharp edges to provide filtered results;

computing one or more gradient maps from the filtered

results; and

estimating the second size based on the gradient maps.

9. The method of claim 8, wherein gradient values below a
gradient threshold are removed from the one or more gradient
maps.

10. The method of claim 1, wherein determining the sug-
gested size for the blur kernel based on the first value and the
second value includes:

calculating an average value of the first and second values;

and

selecting the average value as the suggested size for the

blur kernel.

11. The method of claim 1, further comprising:

receiving input identifying a user-selected size for the blur

kernel; and

determining the suggested size for the blur kernel based on

the first value, the second value and the user-selected
size.

12. An image deblurring system, comprising:

a processor;

an image module, coupled with the processor, the image

module operated on the processor, to access an image
having at least one blurred region; and

ablurkernel sizing module, coupled with the processor, the

blur kernel sizing module to:

automatically, without user input, determine a first value

for a first size of a blur kernel for the at least one blurred
region;

automatically, without user input, determine a second

value for a second size of the blur kernel for the at least
one blurred region;

determine a suggested size for the blur kernel based on the

first value and the second value; and

deblurring the accessed image by deconvolving the at least

one blurred region with the blur kernel of the suggested
size.

13. The system of claim 12, wherein different mathemati-
cal algorithms are used to determine the first and second
values.

10

20

25

30

35

40

45

30

14. The system of claim 12, wherein the first value for the
first size of the blur kernel is determined by an autocorrela-
tion-based size estimator, and the second value for the second
size of the blur kernel is determined by a latent image-based
size estimator.

15. The system of claim 12, wherein determining the sug-
gested size for the blur kernel based on the first value and the
second value includes:

calculating an average value of the first and second values;

and

selecting the average value as the suggested size for the

blur kernel.

16. The system of claim 12, wherein determining the first
value for the first size for the blur kernel includes:

calculating a derivative image for the accessed image;

determining an autocorrelation map for the derivative
image; and

identifying a connected component of nonzero elements

displayed in the autocorrelation map, wherein determin-
ing the second value for the second size of the blur kernel
includes:

determining a latent image for the accessed image;

estimating a blur kernel from the latent image; and

identifying a connected component of nonzero elements
displayed in the estimated blur kernel.

17. A non-transitory computer-readable storage medium
including instructions, when executed by a computer, cause
the computer to perform operations
comprising:

accessing an image having at least one blurred region;

automatically, without user input, determining a first value

for a first size for a blur kernel;

automatically, without user input, determining a second

value for a second size for the blur kernel,

determining a suggested size for the blur kernel based on

the first value and the second value; and

deblurring the accessed image by deconvolving the at least

one blurred region with the blur kernel of the suggested
size.

18. The non-transitory computer-readable storage medium
of claim 17, wherein determining the first value comprises
determining the first value for the first size of the blur kernel
based on an autocorrelation-based estimation, and determin-
ing the second value comprises determining the second value
for the second size of the blur kernel based on a latent image-
based estimation.

